skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hupp, Joseph T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Downsizing noble metal catalysts is essential for improving atomic efficiency in sustainable energy applications. Typically, strategies focus on anchoring atomically scaled catalysts onto heteroatom-rich substrates, but these interactions can unintentionally alter the electronic structure of the catalyst, complicating the hydrogen evolution reaction (HER) mechanism. This study focuses on elucidating the interfacial mechanism of HER using structurally well-defined platinum single-atom (Pt SA) electrocatalysts. Unlike chemically reduced SAs, electrochemically deposited Pt SA catalysts do not rely on strong support interactions. As a result, these isolated Pt atoms can potentially achieve the theoretical maximum hydrogen production efficiency. This work introduces electrocatalysts composed solely of true SA sites, clarifying previous ambiguities surrounding the concept of SA electrocatalysis. 
    more » « less
    Free, publicly-accessible full text available September 10, 2026
  2. CO2capture from post-combustion flue gas originating from coal or natural gas power plants, or even from the ambient atmosphere, is a promising strategy to reduce the atmospheric CO2concentration and achieve global decarbonization goals. However, the co-existence of water vapor in these sources presents a significant challenge, as water often competes with CO2for adsorption sites, thereby diminishing the performance of adsorbent materials. Selectively capturing CO2in the presence of moisture is a key goal, as there is a growing demand for materials capable of selectively adsorbing CO2under humid conditions. Among these, metal–organic frameworks (MOFs), a class of porous, highly tunable materials, have attracted extensive interest for gas capture, storage, and separation applications. The numerous combinations of secondary building units and organic linkers offer abundant opportunities for designing systems with enhanced CO2selectivity. Interestingly, some recent studies have demonstrated that interactions between water and CO2within the confined pore space of MOFs can enhance CO2uptake, flipping the traditionally detrimental role of moisture into a beneficial one. These findings introduce a new paradigm: water-enhanced CO2capture in MOFs. In this review, we summarize these recent discoveries, highlighting examples of MOFs that exhibit enhanced CO2adsorption under humid conditions compared to dry conditions. We discuss the underlying mechanisms, design strategies, and structural features that enable this behavior. Finally, we offer a brief perspective on future directions for MOF development in the context of water-enhanced CO2capture. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  3. Metal-organic frameworks (MOFs) have been examined extensively for CO2 capture, and the influence of water co-adsorption on these processes is particularly relevant, as CO2 capture generally occurs in humid gas streams. To investi-gate CO2/H2O co-adsorption, binary adsorption isotherms of CO2 and H2O were measured on MOF-808-TFA (TFA = trifluoro-acetic acid). When water was pre-adsorbed on MOF-808-TFA, and a subsequent CO2 adsorption isotherm was measured, the CO2 adsorption was slightly reduced, as expected. However, when CO2 was adsorbed first and then an H2O adsorption iso-therm was measured, no significant H2O adsorption capacity was observed. The near complete loss of water adsorption ca-pacity was observed even when only a trace amount of CO2 was pre-adsorbed. The results show that unexpected, non-state function adsorption equilibria can result from dynamic MOF behaviors and defect sites, which may lead to counterintuitive adsorption data compared to traditional materials. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  4. Semiconductor nanocrystals (NCs) offer prospective use as active optical elements in photovoltaics, light-emitting diodes, lasers, and photocatalysts due to their tunable optical absorption and emission properties, high stability, and scalable solution processing, as well as compatibility with additive manufacturing routes. Over the course of experiments, during device fabrication, or while in use commercially, these materials are often subjected to intense or prolonged electronic excitation and high carrier densities. The influence of such conditions on ligand integrity and binding remains underexplored. Here, we expose CdSe NCs to laser excitation and monitor changes in oleate that is covalently attached to the NC surface using nuclear magnetic resonance as a function of time and laser intensity. Higher photon doses cause increased rates of ligand loss from the particles, with upward of 50% total ligand desorption measured for the longest, most intense excitation. Surprisingly, for a range of excitation intensities, fragmentation of the oleate is detected and occurs concomitantly with formation of aldehydes, terminal alkenes, H2, and water. After illumination, NC size, shape, and bandgap remain constant although low-energy absorption features (Urbach tails) develop in some samples, indicating formation of substantial trap states. The observed reaction chemistry, which here occurs with low photon to chemical conversion efficiency, suggests that ligand reactivity may require examination for improved NC dispersion stability but can also be manipulated to yield desired photocatalytically accessed chemical species. 
    more » « less
  5. The stability of metal–organic frameworks (MOFs) in water affects their ability to function as chemical catalysts, their capacity as adsorbents for separations in water vapor presence, and their usefulness as recyclable water harvesters. Here, we have examined water stability of four node-modified variants of the mesoporous MOF, NU-1000, namely formate-, Acac-, TFacac-, and Facac-NU-1000, comparing these with node-accessible NU-1000. These NU-1000 variants present ligands grafted to NU-1000's hexa-Zr( iv )-oxy nodes by displacing terminal aqua and hydroxo ligands. Facac-NU-1000, containing the most hydrophobic ligands, showed the greatest water stability, being able to undergo at least 20 water adsorption/desorption cycles without loss of water uptake capacity. Computational studies revealed dual salutary functions of installed Facac ligands: (1) enhancement of framework mechanical stability due to electrostatic interactions; and (2) transformation and shielding of the otherwise highly hydrophilic nodes from H-bonding interactions with free water, presumably leading to weaker channel-stressing capillary forces during water evacuation – consistent with trends in free energies of dehydration across the NU-1000 variants. Water harvesting and hydrolysis of chemical warfare agent simulants were examined to gauge the functional consequences of modification and mechanical stabilization of NU-1000 by Facac ligands. The studies revealed a harvesting capacity of ∼1.1 L of water vapor per gram of Facac-NU-1000 per sorption cycle. They also revealed retention of catalytic MOF activity following 20 water uptake and release cycles. This study provides insights into the basis for node-ligand-engendered stabilization of wide-channel MOFs against collapse during water removal. 
    more » « less
  6. null (Ed.)